Процентные ставки, их состав, виды и методы начисления. Сложные проценты. Формула сложных процентов

Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.

Немного теории

Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по и сложным процентам.

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования изменяется в каждом периоде начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».

В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.

В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов .

Начисление процентов 1 раз в год

Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)^2, через n лет – P*(1+i)^n. Таким образом, получим формулу наращения для сложных процентов:
S = Р*(1+i)^n
где S - наращенная сумма,
i - годовая ставка,
n - срок ссуды в годах,
(1+ i)^n - множитель наращения.

В рассмотренном выше случае капитализация производится 1 раз в год.
При капитализации m раз в год формула наращения для сложных процентов выглядит так:
S = Р*(1+i/m)^(n*m)
i/m – это ставка за период.
На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).

В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.

Рассмотрим задачу : Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.

Способ 1. Вычисление с помощью таблицы с формулами
Это самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода.
В файле примера это реализовано на листе Постоянная ставка .

За первый период будут начислены проценты в сумме =20000*(15%/12) , т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес.
При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.

Способ 2. Вычисление с помощью формулы Наращенных процентов
Подставим в формулу наращенной суммы S = Р*(1+i)^n значения из задачи.
S = 20000*(1+15%/12)^12
Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации).
Другой вариант записи формулы – через функцию СТЕПЕНЬ()
=20000*СТЕПЕНЬ(1+15%/12; 12)

Способ 3. Вычисление с помощью функции БС().
Функция БС() позволяет определить инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е. она предназначена прежде всего для расчетов в случае . Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов.
=-БС(15%/12;12;;20000)

Или так =-БС(15%/12;12;0;20000;0)

Примечание . В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов БЗРАСПИС() .

Определяем сумму начисленных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.

Сумма начисленных процентов I равна разности между величиной наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i)^n, получим:
I = S – P= Р*(1+i)^n – Р=P*((1+i)^n –1)=150000*((1+12%)^5-1)
Результат: 114 351,25р.
Для сравнения: начисление по простой ставке даст результат 90 000р. (см. файл примера ).

Определяем Срок долга

Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится?
Логарифмируя обе части уравнения S = Р*(1+i)^n, решим его относительно неизвестного параметра n.

В файле примера приведено решение, ответ 6,12 лет.

Вычисляем ставку сложных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?

В файле примера приведено решение, ответ 14,87%.

Примечание . Об эффективной ставке процентов .

Учет (дисконтирование) по сложным процентам

Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход.
Рассмотрим 2 вида учета: математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i)^n
Величину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S.
Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S - P называется дисконтом.

Пример . Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых.
Другими словами, известно:
n = 7 лет,
S = 2 000 000 руб.,
i = 15% .

Решение. P = 2000000/(1+15%)^7
Значение текущей стоимости будет меньше, т.к. открыв сегодня вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.

Тот же результат можно получить с помощью формулы =ПС(15%;7;;-2000000;1)
Функция ПС() возвращает приведенную (к текущему моменту) стоимость инвестиции и .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле:
Р = S*(1- dсл)^n
где dcл - сложная годовая учетная ставка.

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Сравнив формулу наращения для сложных процентов S = Р*(1+i)^n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл)^n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи Начисление процентов несколько раз в год .

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, иногда называют капитализацией процентов.

Формулы наращения 1) Формула наращения по сложным процентам Пусть первоначальная сумма долга равна Р, тогда через один год сумма долга с присоединенными процентами составит Р(1+i), через 2 года - Р (1+i) = Р (1+i 2) через n лет - Р (1+i)n. Таким образом, получаем формулу наращения для сложных процентов. S = P (1+i) n где S - наращенная сумма; i - годовая ставка сложных процентов; n - срок ссуды; (1 + i)n - множитель наращения. В практических расчетах в большинстве случаях применяют дискретные проценты, т. е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т. д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен Р, а знаменатель (1+i). Наращенные суммы по формулам простых и сложных процентов (множители наращения, соответственно, (1 + ni) и (1 + i) n) различаются между собой даже при условии одинакового периода начисления и одинаковой процентной ставки. Покажем это на примере.

Пример 9. Исходная сумма кредита 100 000 ден. ед. Ставка 30 % годовых. Определить наращенную сумму по простым и сложным процентам за 0, 5 года, 1 год и 2 года. Решение. S 1 = 100000 · (1 + 0, 5 · 0, 3) = 115000 ден. ед. S 2 = 100000 · (1 + 1 · 0, 3) = 130000 ден. ед. S 3 = 100000 · (1 + 2 · 0, 3) = 160000 ден. ед. S 4 = 100000 · (1 + 0, 3) 1/2 = 114017 ден. ед. S 5 = 100000 · (1 + 0, 3) 1 = 130000 ден. ед. S 6 = 100000 · (1 + 0, 3) 2 = 169000 ден. ед. Результаты расчетов запишем в таблицу. Проценты Период начисления суммы 0, 5 года 1 год 2 года Простые 115000 ден. ед. 130000 ден. ед. 160000 ден. ед. Сложные 114017 ден. ед. 130000 ден. ед. 169000 ден. ед.

Обобщая полученные результаты расчетов, можно сделать следующие выводы: 1) при периоде менее года простые проценты более выгодны кредитору, банку; 2) при периоде в 1 год использование простых и сложных процентов приводит к равным результатам; 3) при периоде более года использование сложных процентов приводит к более интенсивному росту наращенной суммы, т. е. выгоднее кредитору, банку.

2) Формула наращения по сложным процентам при изменении ставки во времени. В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид S = P (1 + i 1) n 1 (1 + i 2) n 2 … (1 + ik)k где i 1, i 2. . . , ik - последовательные значения ставок процентов, действующих в периоды n 1, n 2. . . , nk соответственно. Пример 10. В договоре зафиксирована переменная ставка сложных процентов, определяемая как 15 % годовых, плюс маржа 6 % в первые два года, 8 % - в третий год, 10% -в четвертый год. Определить величину множителя наращения за 4 года. Решение. (1 + 0, 21) 2 (1 + 0, 23) (1 + 0, 25) = 1, 83

3) Формулы удвоения суммы. В целях оценки своих перспектив кредитору и должнику интересно знать, через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Для этого приравняем множитель наращения величине N, в результате получим: а) для простых процентов (1 + niпр) = N, тогда n = (N – 1) / iпр б) для сложных процентов (1 + iсл)n = N, тогда n = ln. N/ln(1 + icл) Эти две формулы называются формулами удвоения и принимают следующий вид: а) для простых процентов n = 1/iпр б) для сложных процентов n = ln 2/ln (1 + iсл) При небольших ставках процентов (менее 10%) вместо формулы n = ln 2/ln (1 + iсл) можно использовать более простую приближенную, если учесть, что ln 2 ˜ 0, 7, а ln (1 + i) ~ i. Тогда n ~ 0, 7/i

Пример 11. Рассчитать, за сколько лет долг увеличится вдвое при ставке простых и сложных процентов, равной 3 %. Для ставки сложных процентов расчеты выполнить по точной и приближенной формулам. Результаты сравнить. Решение. а) Для случая простых процентов n = 1/iпр = 1/0, 03 = 33, 33 лет б) при сложных процентах, вычисленных по точной формуле, n = ln 2/ln (1 + iсл) = 0, 6931 ln (1 + 0, 03) = 23, 45 в) при сложных процентах, вычисленных по приближенной формуле: n ~ 0, 7/i ~ 0, 7/0, 03 ~ 23, 33 лет Таким образом, одинаковое значение ставок простых и сложных процентов приводит к различным результатам, при малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

4) Начисление годовых процентов при дробном числе лет При дробном числе лет проценты начисляются разными способами: 1) по формуле сложных процентов S = P (1 + i) n 2) на основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые, S = P (1 + i) a (1 + bi) где n = а + b, а - целое число лет, b - дробная часть года; 3) в ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т. е. S = P (1 + i) a

Номинальная и эффективная ставки процентов 1) Номинальная ставка Пусть годовая ставка сложных процентов равна j, а число периодов начисления в году т. Тогда каждый раз проценты начисляют по ставке j/m. Ставка j называется номинальной. Начисление процентов по номинальной ставке производится по формуле S = P (1 + j/m) N где N - число периодов начисления, М= mn. Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам: 1) по формуле сложных процентов S = P (1 + j/m) N/r где N/r- число периодов начисления процентов, r - период начисления процентов; 2) по смешанной формуле S = P (l + j/m) a (l + bj/m) где а - целое число периодов начисления, т. е. а = - целая часть от деления всего срока ссуды N на период начисления r, b - оставшаяся дробная часть периода начисления (b = N/r - а).

Пример 12. Размер ссуды, предоставленной на 28 месяцев, равен 20 млн. ден. ед. Номинальная ставка равна 60 % годовых; начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: на дробную часть начисляются сложные проценты; на дробную часть начисляются простые проценты; дробная часть не учитывается. Результаты расчетов сравнить. Решение. Всего 28/3 периодов начисления, т. е. 9 кварталов и 1 мес. : 1) S = 20 (1 + 0, 6/4)28/3 = 73, 713 млн. ден. ед. ; 2) S = 20 (1 + 0, 6/4)9 (1 + 0, 6/4 1/3) = 73, 875 млн. ден. ед. ; 3) S = 20 (l + 0, 6/4)9 = 70, 358 млн. ден. ед. Из полученных результатов расчета следует, что наибольшего значения наращенная сумма достигает во втором случае, т. е. при начислении на дробную часть простых процентов. Таким образом, для ссудодателя выгоднее второй вариант, так как итоговая сумма получается максимальной, а для заемщика предпочтительнее третий вариант, так как итоговая сумма минимальна.

2) Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m-разовое наращение в год по ставке j/m. Если проценты капитализируются т раз в год, каждый раз со ставкой j/m, то можно записать равенство для соответствующих множителей наращения: (1 + iэ) n = (1 + j/m) mn где iэ - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением iэ = (1 + j/m) m – 1 Обратная зависимость имеет вид j = m [(1 + iэ) 1/m – 1] Пример 13. Банк начисляет сложные проценты на вклад, исходя из годовой номинальной ставки 0, 12. Вычислить эффективную годовую процентную ставку при ежемесячной и ежеквартальной капитализации процентов. Решение. По формуле iэ = (1 + j/m) m – 1 получаем: Iэ = (1 + j/m) m – 1 = (1 + 0, 12/12) 12 – 1 = 1, 192 – 1 = 0, 192 Iэ = (1 + j/m) m – 1 = (1 + 0, 12/4) 4 – 1 = 1, 1255 – 1 = 0, 1255

Пример 14. Определить, какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12 % годовых. Решение. Использование формулы j = m [(1 + iэ) 1/m – 1 дает: j = m [(1 + iэ) 1/m – 1] = 4 [(1 + 0, 12) 1/4 – 1] = 0, 115 3) Учет (дисконтирование) по сложной ставке процентов Как и в случае простых процентов, рассмотрим два вида учета - математический и банковский. Математический учет. В этом случае решается задача, обратная наращению по сложным процентам. Запишем исходную формулу для наращения: S = P (1 + i) n из нее найдем Р: P = S/(1 + i) n = Su n Где u n = 1/(1 + i) n = (1 + i) -n - учетный, или дисконтный, множитель.

Если проценты начисляются т раз в году, то P = S/(1 + j/m) mn = Su mn Где u mn = 1/(1 + j/m) mn = (1 + j/m) –mn - дисконтный множитель. Величину Р, полученную дисконтированием S, называют современной или текущей стоимостью или приведенной величиной S. Дисконтный множитель показывает, во сколько раз первоначальная сумма меньше наращенной. Банковский учет. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле P = S (1 – dсл) n где dсл - сложная годовая учетная ставка. Дисконт определяется как D = S – P = S – S (1 - dсл) = S При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

4) Номинальная учетная ставка процентов В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f. Тогда в каждом периоде, равном 1/m части года, дисконтирование осуществляется по сложной учетной ставке f/m. Процесс дисконтирования по этой сложной учетной ставке описывается формулой P = S (1 – f/m) N где N=тn - общее число периодов дисконтирования. Дисконтирование не один, а m раз в году быстрее снижает величину дисконта. 5) Эффективная учетная ставка Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе т дисконтирований в году. В соответствии с определением эффективной учетной ставки, найдем ее связь с номинальной из равенства дисконтных множителей: (1 – f/m) mn = (1 – dcл) n из которого следует, что dсл = 1 – (1 – f/m) m Отметим, что эффективная учетная ставка всегда меньше номинальной.

6) Наращение по сложной учетной ставке Наращение является обратной задачей для расчета учетных ставок. Формулы наращения по сложным учетным ставкам можно получить из формул дисконтирования P = S (1 – dсл) n и P = S (1 – f/m) N. Получаем: S = P/(1 – dсл) n S = P/(1 - f/m) N Пример 15. Рассчитать, какую сумму следует проставить в векселе, если реально выданная сумма равна 200 000 ден. ед. , срок погашения 2 года. Сумма векселя рассчитывается, исходя из сложной годовой учетной ставки 10 %. Решение. По формуле S = P/(1 – dсл) n получаем: S = 200000/(1 – 0, 1) 2 = 246913, 58 ден. ед. Пример 16. Решить предыдущую задачу при условии, что наращение по сложной учетной ставке осуществляется не один, а 4 раза в год. Решение. Подстановка в формулу S = P/(1 - f/m) N значений т = 4 и N = 4 2 дает: S = 200000/(1 – 0, 1/4) 8 = 244902, 42 ден. ед.

Непрерывные проценты 1) Наращение и дисконтирование Наращенная сумма при дискретных процентах, как было показано, определяется по формуле S = P (1 + j/m) mn где j - номинальная ставка процентов, m - число периодов начисления процентов в году. Чем больше m, тем меньше промежутки времени между моментами начисления процентов. В пределе при m ∞ имеем Используя второй замечательный предел получаем: 1 2 Используя этот предел в выражении (1), получаем, что формула наращенной суммы в случае непрерывного начисления процентов по ставке j имеет вид S = Pe in

Для того чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают б: S = Pe бn Сила роста представляет собой номинальную ставку процентов при т ∞. Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле P = Se –бn 2)Cвязь дискретных и непрерывных процентных ставок Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить, приравнивая соответствующие множители наращения: (1+ i) n = e бn Из этого равенства следует, что б = ln(1+ i) i = еб – 1

Люди во все времена думали о своем завтрашнем дне. Они старались и стараются обезопасить от финансовых невзгод и себя, и своих детей и внуков, строя хотя бы небольшой островок уверенности в будущем. Начиная строить его уже сейчас с помощью небольших банковских вкладов, можно обеспечить себе в дальнейшем стабильность и независимость.

Основным принципом банковских операций является то, что денежные средства способны увеличиваться лишь тогда, когда находятся в постоянном обороте. Чтобы клиентам уверенно ориентироваться в сфере финансовых услуг и уметь правильно подбирать условия, выгодные им в определенный промежуток времени, необходимо знать ряд простых правил. В данной статье речь пойдет о долгосрочных вложениях, которые позволяют за определенное количество лет из относительно небольшой суммы начального капитала получить существенную прибыль или использовать вклад дальше, снимая начисления для повседневных нужд.

Для правильного расчета прибыли необходимо выполнить несложные арифметические действия на основе нижеизложенных формул.

Формула сложного процента (расчет в годах)

Например, вы решили положить 100000,00 руб. под 11% годовых, чтобы через 10 лет воспользоваться сбережениями, которые значительно выросли в результате капитализации. Для расчета итоговой суммы следует применить методику расчета сложного процента.

Применение сложного процента подразумевает то, что в конце каждого периода (год, квартал, месяц) начисленная прибыль суммируется с вкладом. Полученная сумма является базисом для последующего увеличения прибыли.

Для расчета сложного процента применяем простую формулу:

  • S – общая сумма («тело» вклада + проценты), причитающаяся к возврату вкладчику по истечении срока действия вклада;
  • Р – первоначальная величина вклада;
  • n - общее количество операций по капитализации процентов за весь срок привлечения денежных средствданном случае оно соответствует количеству лет);
  • I – годовая процентная ставка.

Подставив значения в эту формулу, мы видим, что:

через 5 лет сумма будет равняться руб.,

а через 10 лет она составит руб.

Если бы мы рассчитывали за короткий период, то сложный процент было бы удобнее рассчитывать по формуле

  • К – количество дней в текущем году,
  • J – количество дней в периоде, по итогам которого банком производится капитализация начисленных процентов (остальные обозначения – как и в предыдущей формуле).

Но тем, кому удобнее ежемесячно снимать проценты по вкладу, лучше ознакомиться с понятием «капитализация вклада», подразумевающим начисление простых процентов.

На графике показано как вырастет капитал при капитализации процентов по вкладу, если вложить 100000,00 руб. на 10 лет под 10%, 15% и 20%

Формула сложного процента (расчет в месяцах)

Существует и другой, более выгодный для клиента метод начисления и прибавления процентной ставки – ежемесячный. Для этого применяется следующая формула:

где n также соответствует количеству операций по капитализации, но уже выражается в месяцах. Процентный показатель здесь дополнительно делится на 12 потому что в году 12 месяцев, а у нас появляется необходимость в расчете месячную процентную ставку.

Если бы данная формула использовалась для поквартального начисления вклада, то годовой процент делился бы на 4, а показатель n был бы равен количеству кварталов, а если бы процент начислялся по полугодиям, то процентная ставка делилась бы 2, а обозначение n соответствовало количеству полугодий.

Итак, если бы нами был сделан вклад в сумме 100000,00 руб. с ежемесячной капитализацией процентов, то:

через 5 лет (60 месяцев) сумма вклада выросла бы до 172891,57 руб., что примерно на 10000 руб. больше, чем в случае с ежегодной капитализацией вклада; руб.

а через 10 лет (120 месяцев) «наращенная» сумма составила бы 298914,96 руб., что уже на целых 15000 руб. превосходит показатель, рассчитанный по формуле сложного процента, предусматривающей расчет в годах.

руб.

Это означает, что доходность при ежемесячном начислении процентов оказывается больше, чем при начислении один раз в год. И если прибыль не снимать, то сложный процент работает на пользу вкладчика.

Формула сложного процента для банковских вкладов

Вышеописанные формулы сложного процента – это, скорее всего, наглядные примеры для клиентов, чтобы они могли понять порядок начисления сложных процентов. Эти расчеты несколько проще, чем формула, применяемая банками к реальным банковским вкладам.

Здесь используется такая единица, как коэффициент процентной ставки для вклада (p). Его рассчитывают так:

Сложный процент («наращенная» сумма) для банковских вкладов рассчитывается по следующей формуле:

На ее основе и взяв в качестве примера те же данные, мы рассчитаем сложный процент по банковскому методу.

Для начала определяем коэффициент процентной ставки для вклада:

Теперь подставляем данные в основную формулу:

руб. – это сумма вклада, «выросшая» за 5 лет*;

руб. – за 10 лет*.

*Приведенные в примерах расчеты являются приблизительными, поскольку в них не учтены високосные года и разное количество дней в месяце.

Если сравнивать суммы из этих двух примеров с предыдущими, то они несколько меньше, но все же выгода от капитализации процентов очевидна. Поэтому, если вы твердо решили положить деньги в банк на длительный срок, то предварительный подсчет прибыли лучше делать с помощью «банковской» формулы – это поможет вам избежать разочарований.

. База для начисления сложных процентов в отличие от простых не остается постоянной – она увеличивается с каждым шагом во времени. Абсолютная сумма начисляемых процентов возрастает, и процесс увеличения суммы долга происходит с ускорением. Наращение по сложным процентам можно представить как последовательное реинвестирование средств, вложенных под простые про центы на один период начисления ( running period ). Присоедине ние начисленных процентов к сумме, которая послужила базой для их начисления, часто называют капитализацией процентов.

Найдем формулу для расчета наращенной суммы при условии, что проценты начисляются и капитализируются один раз в году (годовые проценты). Для этого применяется сложная став ка наращения. Для записи формулы наращения применим те же обозначения, что и в формуле наращения по простым про центам:

P - первоначальный размер долга (ссуды, кредита, капита ла и т.д.),

S - наращенная сумма на конец срока ссуды,

п - срок, число лет наращения,

i - уровень годовой ставки процентов, представленный де сятичной дробью.

Очевидно, что в конце первого года проценты равны величине Р i , а наращенная сумма составит. К конц у второго года она достигнет величины В конце n -го года наращенная сумма будет равна

(4.1)

Процентыза этот же срокв целом таковы:

(4.2)

Часть из них поучена за счет начисления процентов на проценты. Она составляет

(4.3)

Как показано выше, рост по сложным процентам представ ляет собой процесс, соответствующий геометрической прогрессии, первый член которой равен Р , а знаменатель – . Последний член прогрессии равен наращенной сумме в конце срока ссуды.

Величину называют множителем наращения по сложным процентам. Значения этого множителя для целых чисел п приводятся в таблицах сложных процентов. Точность расчета множителя в практических расчетах определяется допустимой степенью округления наращенной суммы (до последней копейки, рубля и т.д.).

Время при наращении по сложной ставке обычно измеряет ся как АСТ/ A СТ.

Как видим, величина множителя наращения зависит от двух параметров - i и п. Следует отметить, что при большом сроке наращения даже небольшое изменение ставки заметно влияет на величину множителя. В свою очередь очень большой срок приводит к устрашающим результатам даже при небольшой процентной ставке.

Формула наращения по сложным процентам получена для годовой процентной ставки и срока, измеряемого в годах. Однако ее можно применять и при других периодах начисле ния. В этих случаях i означает ставку за один период начисления (месяц, квартал и т.д.), а n – число таких периодов. На пример, если i –ставка за полугодие, то п число полугодий и т.д.

Формулы (4.1) - (4.3) предполагают, что проценты на про центы начисляются по той же ставке, что и при начислении на основную сумму долга. Усложним условия начислений процен тов. Пусть проценты на основной долг начисляются по ставке i а проценты на проценты – по ставке В этом случае

Ряд в квадратных скобках представляет собой геометриче скую прогрессию с первым членом, равным 1, и знаменателем. В итоге имеем

(4.4)

· Пример 4.1

2. Начисление процентов в смежных календарных периодах. Вы ше при начислении процентов не принималось во внимание расположение срока начисления процентов относительно календарных периодов. Вместе с тем, часто даты начала и окончания ссуды находятся в двух периодах. Ясно, что начисленные за весь срок проценты не могут быть отнесены только к послед нему периоду. В бухгалтерском учете, при налогообложении, наконец, в анализе финансовой деятельности предприятия воз никает задача распределения начисленных процентов по периодам.

Общий срок ссуды делится на два периода n 1 и n 2 . Соответственно ,

где

· Пример 4.2

3. Переменные ставки. Формула предполагает постоянную ставку на протяжении всего срока начисления процентов. Неустойчивость кредитно-денежного рынка заставляет модернизировать “классическую” схему, например, с помощью применения плавающих ставок ( floating rate ). Естественно, что расчет на перспективу по таким ставкам весьма условен. Иное дело - расчет постфактум. В этом случае, а также тогда, когда измене ния размеров ставок фиксируются в контракте, общий множитель наращения определяется как произведение частных, т.е.

(4.5)

где - последовательные значения ставок; - периоды, в течение которых “работают” соответствующие ставки.

· Пример 4.3

4. Начисление процентов при дробном числе лет. Часто срок в го дах для начисления процентов не является целым числом. В правилах ряда коммерческих банков для некоторых операций проценты начисляются только за целое число лет или других периодов начисления. Дробная часть периода отбрасывается. В большинстве же случаев учитывается полный срок. При этом применяют два метода. Согласно первому, назовем его общим, расчет ведется по формуле:

(4.6)

Второй, сме шанный, метод предполагает начисление процентов за целое число лет по формуле сложных процентов и за дробную часть срока по формуле простых процентов:

,(4.7)

где – срок ссуды, а - целое число лет, b - дробная часть года.

Аналогичный метод применяется и в случаях, когда перио дом начисления является полугодие, квартал или месяц.

При выборе метода расчета следует иметь в виду, что мно житель наращения по смешанному методу оказывается несколько больше, чем по общему, так как для п < 1 справедли во соотношение

Наибольшая разница наблю дается при b = 1/2.

· Пример 4.4

5. Сравнение роста по сложным и простым процентам. Пусть временная база для начисленияодна и та же, уровень процентных ставок совпадает, тогда:

1) для срока меньше года простые проценты больше сложных

2) для срока больше года

3) для срока 1 год множители наращения равны друг другу

Используя коэффициент наращения по простыми сложным процентам можно определить время, необходимое для увеличенияпервоначальной суммы в n раз. Для этого необходимо, что быкоэффициенты наращениябыли равны величине n :

1) для простых процентов

2) для сложных процентов

Формулы дляудвоениякапитала имеют вид:

Сложные проценты

2.2.1. Формула сложых процентов

2.2.2. Эффективная ставка процентов

2.2.3. Переменная ставка процентов

2.2.4. Непрерывное начисление процентов

2.2.5. Определение срока ссуды и величины процентной ставки

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.

Применение схемы сложных процентов целесообразно в тех случаях, когда:

  • проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов;
  • срок ссуды более года.

Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:

FV = PV + I = PV + PV i = PV (1 + i )

– за один период начисления;

FV = (PV + I ) (1 + i ) = PV (1 + i ) (1 + i ) = PV (1 + i ) 2

– за два периода начисления;

отсюда, за n периодов начисления формула примет вид:

FV = PV (1 + i ) n = PV k н ,

где FV – наращенная сумма долга;

PV – первоначальная сумма долга;

i – ставка процентов в периоде начисления;

n – количество периодов начисления;

k н – коэффициент (множитель) наращения сложных процентов.

Эта формула называется формулой сложных процентов.

Как было выше указано, различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами. Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.

Согласно общей теории статистики, для получения базисного темпа роста необходимо перемножить цепные темпы роста. Поскольку ставка процента за период является цепным темпом прироста, то цепной темп роста равен:

(1 + i ).

Тогда базисный темп роста за весь период, исходя из постоянного темпа прироста, имеет вид:


(1 + i ) n .

Базисные темпы роста или коэффициенты (множители) наращения, зависящие от процентной ставки и числа периодов наращения, табулированы и представлены в Приложении 2. Экономический смысл множителя наращения состоит в том, что он показывает, чему будет равна одна денежная единица (один рубль, один доллар и т.п.) через n периодов при заданной процентной ставке i . 5>>>

Графическая иллюстрация соотношения наращенной суммы по простым и сложным процентам представлена на рисунке 4.



Похожие статьи